Cargando…

Analyzing Discrepancies in Chemical-Shift Predictions of Solid Pyridinium Fumarates

Highly accurate chemical-shift predictions in molecular solids are behind the success and rapid development of NMR crystallography. However, unusually large errors of predicted hydrogen and carbon chemical shifts are sometimes reported. An understanding of these deviations is crucial for the reliabi...

Descripción completa

Detalles Bibliográficos
Autor principal: Dračínský, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270278/
https://www.ncbi.nlm.nih.gov/pubmed/34202841
http://dx.doi.org/10.3390/molecules26133857
Descripción
Sumario:Highly accurate chemical-shift predictions in molecular solids are behind the success and rapid development of NMR crystallography. However, unusually large errors of predicted hydrogen and carbon chemical shifts are sometimes reported. An understanding of these deviations is crucial for the reliability of NMR crystallography. Here, recently reported large deviations of predicted hydrogen and carbon chemical shifts of a series of solid pyridinium fumarates are thoroughly analyzed. The influence of the geometry optimization protocol and of the computational level of NMR calculations on the accuracy of predicted chemical shifts is investigated. Periodic calculations with GGA, meta-GGA and hybrid functionals are employed. Furthermore, molecular corrections at the coupled-cluster singles-and-doubles (CCSD) level are calculated. The effect of nuclear delocalization on the structure and NMR shielding is also investigated. The geometry optimization with a computationally demanding hybrid functional leads to a substantial improvement in proton chemical-shift predictions.