Cargando…
Invasive Plant Species Biomass—Evaluation of Functional Value
Invasive plant species (IAS), with their numerous negative ecological, health, and economic impacts, represent one of the greatest conservation challenges in the world. Reducing the negative impacts and potentially exploiting the biomass of these plant species can significantly contribute to sustain...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270279/ https://www.ncbi.nlm.nih.gov/pubmed/34206657 http://dx.doi.org/10.3390/molecules26133814 |
Sumario: | Invasive plant species (IAS), with their numerous negative ecological, health, and economic impacts, represent one of the greatest conservation challenges in the world. Reducing the negative impacts and potentially exploiting the biomass of these plant species can significantly contribute to sustainable management, protect biodiversity, and create a healthy environment. Therefore, the main objective of this study was to evaluate the nutritional potential, phytochemical status, and antioxidant capacity of nine alien invasive plant species: Abutilon theophrasti, Amaranthus retroflexus, Ambrosia artemisiifolia, Datura stramonium, Erigeron annuus, Galinsoga ciliata, Reynoutria japonica, Solidago gigantea, and Sorghum halepense. Multivariate statistical methods such as cluster and PCA were performed to determine possible connections and correlations among selected IAS depending on the phytochemical content. According to the obtained results, R. japonica was notable with the highest content of vitamin C (38.46 mg/100 g FW); while E. annuus (1365.92 mg GAE/100 g FW) showed the highest values of total polyphenolic compounds. A. retroflexus was characterized by the highest content of total chlorophylls (0.26 mg/g) and antioxidant capacity (2221.97 µmol TE/kg). Therefore, it can be concluded that the selected IAS represent nutrient-rich plant material with significant potential for the recovering of bioactive compounds. |
---|