Cargando…
Fine-grained classification based on multi-scale pyramid convolution networks
The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability t...
Autores principales: | Wang, Gaihua, Cheng, Lei, Lin, Jinheng, Dai, Yingying, Zhang, Tianlun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270455/ https://www.ncbi.nlm.nih.gov/pubmed/34242297 http://dx.doi.org/10.1371/journal.pone.0254054 |
Ejemplares similares
-
Instance segmentation convolutional neural network based on multi-scale attention mechanism
por: Gaihua, Wang, et al.
Publicado: (2022) -
Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs)
por: Liu, Weihuang, et al.
Publicado: (2020) -
A Fine-Grained Image Classification and Detection Method Based on Convolutional Neural Network Fused with Attention Mechanism
por: Zhang, Yue
Publicado: (2022) -
Birdsong classification based on ensemble multi-scale convolutional neural network
por: Liu, Jiang, et al.
Publicado: (2022) -
Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification
por: Li, Simin, et al.
Publicado: (2019)