Cargando…

Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers

ABSTRACT: Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numero...

Descripción completa

Detalles Bibliográficos
Autores principales: Fournier, Laure, Costaridou, Lena, Bidaut, Luc, Michoux, Nicolas, Lecouvet, Frederic E., de Geus-Oei, Lioe-Fee, Boellaard, Ronald, Oprea-Lager, Daniela E., Obuchowski, Nancy A, Caroli, Anna, Kunz, Wolfgang G., Oei, Edwin H., O’Connor, James P. B., Mayerhoefer, Marius E., Franca, Manuela, Alberich-Bayarri, Angel, Deroose, Christophe M., Loewe, Christian, Manniesing, Rashindra, Caramella, Caroline, Lopci, Egesta, Lassau, Nathalie, Persson, Anders, Achten, Rik, Rosendahl, Karen, Clement, Olivier, Kotter, Elmar, Golay, Xavier, Smits, Marion, Dewey, Marc, Sullivan, Daniel C., van der Lugt, Aad, deSouza, Nandita M., European Society of Radiology
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270834/
https://www.ncbi.nlm.nih.gov/pubmed/33492473
http://dx.doi.org/10.1007/s00330-020-07598-8
_version_ 1783720876835864576
author Fournier, Laure
Costaridou, Lena
Bidaut, Luc
Michoux, Nicolas
Lecouvet, Frederic E.
de Geus-Oei, Lioe-Fee
Boellaard, Ronald
Oprea-Lager, Daniela E.
Obuchowski, Nancy A
Caroli, Anna
Kunz, Wolfgang G.
Oei, Edwin H.
O’Connor, James P. B.
Mayerhoefer, Marius E.
Franca, Manuela
Alberich-Bayarri, Angel
Deroose, Christophe M.
Loewe, Christian
Manniesing, Rashindra
Caramella, Caroline
Lopci, Egesta
Lassau, Nathalie
Persson, Anders
Achten, Rik
Rosendahl, Karen
Clement, Olivier
Kotter, Elmar
Golay, Xavier
Smits, Marion
Dewey, Marc
Sullivan, Daniel C.
van der Lugt, Aad
deSouza, Nandita M.
European Society of Radiology
author_facet Fournier, Laure
Costaridou, Lena
Bidaut, Luc
Michoux, Nicolas
Lecouvet, Frederic E.
de Geus-Oei, Lioe-Fee
Boellaard, Ronald
Oprea-Lager, Daniela E.
Obuchowski, Nancy A
Caroli, Anna
Kunz, Wolfgang G.
Oei, Edwin H.
O’Connor, James P. B.
Mayerhoefer, Marius E.
Franca, Manuela
Alberich-Bayarri, Angel
Deroose, Christophe M.
Loewe, Christian
Manniesing, Rashindra
Caramella, Caroline
Lopci, Egesta
Lassau, Nathalie
Persson, Anders
Achten, Rik
Rosendahl, Karen
Clement, Olivier
Kotter, Elmar
Golay, Xavier
Smits, Marion
Dewey, Marc
Sullivan, Daniel C.
van der Lugt, Aad
deSouza, Nandita M.
European Society of Radiology
author_sort Fournier, Laure
collection PubMed
description ABSTRACT: Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.
format Online
Article
Text
id pubmed-8270834
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-82708342021-07-20 Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers Fournier, Laure Costaridou, Lena Bidaut, Luc Michoux, Nicolas Lecouvet, Frederic E. de Geus-Oei, Lioe-Fee Boellaard, Ronald Oprea-Lager, Daniela E. Obuchowski, Nancy A Caroli, Anna Kunz, Wolfgang G. Oei, Edwin H. O’Connor, James P. B. Mayerhoefer, Marius E. Franca, Manuela Alberich-Bayarri, Angel Deroose, Christophe M. Loewe, Christian Manniesing, Rashindra Caramella, Caroline Lopci, Egesta Lassau, Nathalie Persson, Anders Achten, Rik Rosendahl, Karen Clement, Olivier Kotter, Elmar Golay, Xavier Smits, Marion Dewey, Marc Sullivan, Daniel C. van der Lugt, Aad deSouza, Nandita M. European Society of Radiology Eur Radiol Imaging Informatics and Artificial Intelligence ABSTRACT: Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. KEY POINTS: • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory. Springer Berlin Heidelberg 2021-01-25 2021 /pmc/articles/PMC8270834/ /pubmed/33492473 http://dx.doi.org/10.1007/s00330-020-07598-8 Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Imaging Informatics and Artificial Intelligence
Fournier, Laure
Costaridou, Lena
Bidaut, Luc
Michoux, Nicolas
Lecouvet, Frederic E.
de Geus-Oei, Lioe-Fee
Boellaard, Ronald
Oprea-Lager, Daniela E.
Obuchowski, Nancy A
Caroli, Anna
Kunz, Wolfgang G.
Oei, Edwin H.
O’Connor, James P. B.
Mayerhoefer, Marius E.
Franca, Manuela
Alberich-Bayarri, Angel
Deroose, Christophe M.
Loewe, Christian
Manniesing, Rashindra
Caramella, Caroline
Lopci, Egesta
Lassau, Nathalie
Persson, Anders
Achten, Rik
Rosendahl, Karen
Clement, Olivier
Kotter, Elmar
Golay, Xavier
Smits, Marion
Dewey, Marc
Sullivan, Daniel C.
van der Lugt, Aad
deSouza, Nandita M.
European Society of Radiology
Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title_full Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title_fullStr Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title_full_unstemmed Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title_short Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
title_sort incorporating radiomics into clinical trials: expert consensus endorsed by the european society of radiology on considerations for data-driven compared to biologically driven quantitative biomarkers
topic Imaging Informatics and Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270834/
https://www.ncbi.nlm.nih.gov/pubmed/33492473
http://dx.doi.org/10.1007/s00330-020-07598-8
work_keys_str_mv AT fournierlaure incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT costaridoulena incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT bidautluc incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT michouxnicolas incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT lecouvetfrederice incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT degeusoeilioefee incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT boellaardronald incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT oprealagerdanielae incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT obuchowskinancya incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT carolianna incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT kunzwolfgangg incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT oeiedwinh incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT oconnorjamespb incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT mayerhoefermariuse incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT francamanuela incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT alberichbayarriangel incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT deroosechristophem incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT loewechristian incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT manniesingrashindra incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT caramellacaroline incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT lopciegesta incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT lassaunathalie incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT perssonanders incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT achtenrik incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT rosendahlkaren incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT clementolivier incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT kotterelmar incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT golayxavier incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT smitsmarion incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT deweymarc incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT sullivandanielc incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT vanderlugtaad incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT desouzananditam incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers
AT europeansocietyofradiology incorporatingradiomicsintoclinicaltrialsexpertconsensusendorsedbytheeuropeansocietyofradiologyonconsiderationsfordatadrivencomparedtobiologicallydrivenquantitativebiomarkers