Cargando…
Deep learning–based metal artefact reduction in PET/CT imaging
OBJECTIVES: The susceptibility of CT imaging to metallic objects gives rise to strong streak artefacts and skewed information about the attenuation medium around the metallic implants. This metal-induced artefact in CT images leads to inaccurate attenuation correction in PET/CT imaging. This study i...
Autores principales: | Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270868/ https://www.ncbi.nlm.nih.gov/pubmed/33569626 http://dx.doi.org/10.1007/s00330-021-07709-z |
Ejemplares similares
-
Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
por: Sanaat, Amirhossein, et al.
Publicado: (2021) -
Artefacts of PET/CT images
por: Pettinato, C, et al.
Publicado: (2006) -
Deep‐TOF‐PET: Deep learning‐guided generation of time‐of‐flight from non‐TOF brain PET images in the image and projection domains
por: Sanaat, Amirhossein, et al.
Publicado: (2022) -
Motion artefact reduction in coronary CT angiography images with a deep learning method
por: Ren, Pengling, et al.
Publicado: (2022) -
MRI‐guided attenuation correction in torso PET/MRI: Assessment of segmentation‐, atlas‐, and deep learning‐based approaches in the presence of outliers
por: Arabi, Hossein, et al.
Publicado: (2021)