Cargando…
An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation
We propose a Double EXponential Adaptive Threshold (DEXAT) neuron model that improves the performance of neuromorphic Recurrent Spiking Neural Networks (RSNNs) by providing faster convergence, higher accuracy and a flexible long short-term memory. We present a hardware efficient methodology to reali...
Autores principales: | Shaban, Ahmed, Bezugam, Sai Sukruth, Suri, Manan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270926/ https://www.ncbi.nlm.nih.gov/pubmed/34244491 http://dx.doi.org/10.1038/s41467-021-24427-8 |
Ejemplares similares
-
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Advances in neuromorphic hardware exploiting emerging nanoscale devices
por: Suri, Manan
Publicado: (2017) -
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
por: Davidson, Simon, et al.
Publicado: (2021) -
Spikeling: A low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach
por: Baden, Tom, et al.
Publicado: (2018)