Cargando…

Filtration mapping as complete Bell state analyzer for bosonic particles

In this paper, we present the approach to complete Bell state analysis based on filtering mapping. The key distinctive feature of this appoach is that it avoids complications related to using either hyperentanglement or representation of the Bell states as concatenated Greenber–Horne–Zeilinger (C-GH...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozubov, A. V., Gaidash, A. A., Kiselev, A. D., Miroshnichenko, G. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270949/
https://www.ncbi.nlm.nih.gov/pubmed/34244596
http://dx.doi.org/10.1038/s41598-021-93679-7
Descripción
Sumario:In this paper, we present the approach to complete Bell state analysis based on filtering mapping. The key distinctive feature of this appoach is that it avoids complications related to using either hyperentanglement or representation of the Bell states as concatenated Greenber–Horne–Zeilinger (C-GHZ) state to perform discrimination procedure. We describe two techniques developed within the suggested approach and based on two-step algorithms with two different types of filtration mapping which can be called the non-demolition and semi-demolition filtrations. In the method involving non-demolition filtration measurement the filtration process employs cross-Kerr nonlinearity and the probe mode to distinguish between the two pairs of the Bell states. In the case of semi-demolition measurement, the two states are unambiguously discriminated and hence destroyed, whereas filtraton keeps the other two states intact. We show that the measurement that destroys the single photon subspace in every mode and preserves the superposition of zero and two photons can be realized with discrete photodetection based on microresonator with atoms.