Cargando…
Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics
Machine learning is widely applied in drug discovery research to predict molecular properties and aid in the identification of active compounds. Herein, we introduce a new approach that uses model-internal information from compound activity predictions to uncover relationships between target protein...
Autores principales: | Rodríguez-Pérez, Raquel, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270985/ https://www.ncbi.nlm.nih.gov/pubmed/34244588 http://dx.doi.org/10.1038/s41598-021-93771-y |
Ejemplares similares
-
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
por: Feldmann, Christian, et al.
Publicado: (2021) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
Predicting Isoform-Selective Carbonic Anhydrase Inhibitors
via Machine Learning and Rationalizing Structural Features Important
for Selectivity
por: Galati, Salvatore, et al.
Publicado: (2021) -
Prediction of Compound Profiling Matrices Using Machine Learning
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2018)