Cargando…
A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions
Deep learning algorithms trained on instances that violate the assumption of being independent and identically distributed (i.i.d.) are known to experience destructive interference, a phenomenon characterized by a degradation in performance. Such a violation, however, is ubiquitous in clinical setti...
Autores principales: | Kiyasseh, Dani, Zhu, Tingting, Clifton, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270996/ https://www.ncbi.nlm.nih.gov/pubmed/34244504 http://dx.doi.org/10.1038/s41467-021-24483-0 |
Ejemplares similares
-
A Framework for Enabling Unpaired Multi-Modal Learning for Deep Cross-Modal Hashing Retrieval
por: Williams-Lekuona, Mikel, et al.
Publicado: (2022) -
Continual Deep Learning for Time Series Modeling
por: Ao, Sio-Iong, et al.
Publicado: (2023) -
Leveraging clinical data across healthcare institutions for continual learning of predictive risk models
por: Amrollahi, Fatemeh, et al.
Publicado: (2022) -
Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
por: Li, Frédéric, et al.
Publicado: (2020) -
A deep learning based framework for the registration of three dimensional multi-modal medical images of the head
por: Islam, Kh Tohidul, et al.
Publicado: (2021)