Cargando…
A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control
Assistant devices such as meal-assist robots aid individuals with disabilities and support the elderly in performing daily activities. However, existing meal-assist robots are inconvenient to operate due to non-intuitive user interfaces, requiring additional time and effort. Thus, we developed a hyb...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271393/ https://www.ncbi.nlm.nih.gov/pubmed/34283122 http://dx.doi.org/10.3390/s21134578 |
_version_ | 1783720991549030400 |
---|---|
author | Ha, Jihyeon Park, Sangin Im, Chang-Hwan Kim, Laehyun |
author_facet | Ha, Jihyeon Park, Sangin Im, Chang-Hwan Kim, Laehyun |
author_sort | Ha, Jihyeon |
collection | PubMed |
description | Assistant devices such as meal-assist robots aid individuals with disabilities and support the elderly in performing daily activities. However, existing meal-assist robots are inconvenient to operate due to non-intuitive user interfaces, requiring additional time and effort. Thus, we developed a hybrid brain–computer interface-based meal-assist robot system following three features that can be measured using scalp electrodes for electroencephalography. The following three procedures comprise a single meal cycle. (1) Triple eye-blinks (EBs) from the prefrontal channel were treated as activation for initiating the cycle. (2) Steady-state visual evoked potentials (SSVEPs) from occipital channels were used to select the food per the user’s intention. (3) Electromyograms (EMGs) were recorded from temporal channels as the users chewed the food to mark the end of a cycle and indicate readiness for starting the following meal. The accuracy, information transfer rate, and false positive rate during experiments on five subjects were as follows: accuracy (EBs/SSVEPs/EMGs) (%): (94.67/83.33/97.33); FPR (EBs/EMGs) (times/min): (0.11/0.08); ITR (SSVEPs) (bit/min): 20.41. These results revealed the feasibility of this assistive system. The proposed system allows users to eat on their own more naturally. Furthermore, it can increase the self-esteem of disabled and elderly peeople and enhance their quality of life. |
format | Online Article Text |
id | pubmed-8271393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82713932021-07-11 A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control Ha, Jihyeon Park, Sangin Im, Chang-Hwan Kim, Laehyun Sensors (Basel) Article Assistant devices such as meal-assist robots aid individuals with disabilities and support the elderly in performing daily activities. However, existing meal-assist robots are inconvenient to operate due to non-intuitive user interfaces, requiring additional time and effort. Thus, we developed a hybrid brain–computer interface-based meal-assist robot system following three features that can be measured using scalp electrodes for electroencephalography. The following three procedures comprise a single meal cycle. (1) Triple eye-blinks (EBs) from the prefrontal channel were treated as activation for initiating the cycle. (2) Steady-state visual evoked potentials (SSVEPs) from occipital channels were used to select the food per the user’s intention. (3) Electromyograms (EMGs) were recorded from temporal channels as the users chewed the food to mark the end of a cycle and indicate readiness for starting the following meal. The accuracy, information transfer rate, and false positive rate during experiments on five subjects were as follows: accuracy (EBs/SSVEPs/EMGs) (%): (94.67/83.33/97.33); FPR (EBs/EMGs) (times/min): (0.11/0.08); ITR (SSVEPs) (bit/min): 20.41. These results revealed the feasibility of this assistive system. The proposed system allows users to eat on their own more naturally. Furthermore, it can increase the self-esteem of disabled and elderly peeople and enhance their quality of life. MDPI 2021-07-04 /pmc/articles/PMC8271393/ /pubmed/34283122 http://dx.doi.org/10.3390/s21134578 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ha, Jihyeon Park, Sangin Im, Chang-Hwan Kim, Laehyun A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title | A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title_full | A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title_fullStr | A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title_full_unstemmed | A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title_short | A Hybrid Brain–Computer Interface for Real-Life Meal-Assist Robot Control |
title_sort | hybrid brain–computer interface for real-life meal-assist robot control |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271393/ https://www.ncbi.nlm.nih.gov/pubmed/34283122 http://dx.doi.org/10.3390/s21134578 |
work_keys_str_mv | AT hajihyeon ahybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT parksangin ahybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT imchanghwan ahybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT kimlaehyun ahybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT hajihyeon hybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT parksangin hybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT imchanghwan hybridbraincomputerinterfaceforreallifemealassistrobotcontrol AT kimlaehyun hybridbraincomputerinterfaceforreallifemealassistrobotcontrol |