Cargando…
Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN
Currently, greenhouses are widely applied for plant growth, and environmental parameters can also be controlled in the modern greenhouse to guarantee the maximum crop yield. In order to optimally control greenhouses’ environmental parameters, one indispensable requirement is to accurately predict cr...
Autores principales: | Gong, Liyun, Yu, Miao, Jiang, Shouyong, Cutsuridis, Vassilis, Pearson, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271501/ https://www.ncbi.nlm.nih.gov/pubmed/34283083 http://dx.doi.org/10.3390/s21134537 |
Ejemplares similares
-
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020) -
piRNN: deep learning algorithm for piRNA prediction
por: Wang, Kai, et al.
Publicado: (2018) -
Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach?
por: Cutsuridis, Vassilis
Publicado: (2019) -
An intelligent Chatbot using deep learning with Bidirectional RNN and attention model
por: Dhyani, Manyu, et al.
Publicado: (2021) -
A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network
por: Guesbaya, Mounir, et al.
Publicado: (2023)