Cargando…

Electrospun Nickel Manganite (NiMn(2)O(4)) Nanocrystalline Fibers for Humidity and Temperature Sensing

Nickel manganite nanocrystalline fibers were obtained by electrospinning and subsequent calcination at 400 °C. As-spun fibers were characterized by TG/DTA, Scanning Electron Microscopy and FT-IR spectroscopy analysis. X-ray diffraction and FT-IR spectroscopy analysis confirmed the formation of nicke...

Descripción completa

Detalles Bibliográficos
Autores principales: Dojcinovic, Milena P., Vasiljevic, Zorka Z., Krstic, Jugoslav B., Vujancevic, Jelena D., Markovic, Smilja, Tadic, Nenad B., Nikolic, Maria Vesna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271516/
https://www.ncbi.nlm.nih.gov/pubmed/34202332
http://dx.doi.org/10.3390/s21134357
Descripción
Sumario:Nickel manganite nanocrystalline fibers were obtained by electrospinning and subsequent calcination at 400 °C. As-spun fibers were characterized by TG/DTA, Scanning Electron Microscopy and FT-IR spectroscopy analysis. X-ray diffraction and FT-IR spectroscopy analysis confirmed the formation of nickel manganite with a cubic spinel structure, while N(2) physisorption at 77 K enabled determination of the BET specific surface area as 25.3 m(2)/g and (BJH) mesopore volume as 21.5 m(2)/g. The material constant (B) of the nanocrystalline nickel manganite fibers applied by drop-casting on test interdigitated electrodes on alumina substrate, dried at room temperature, was determined as 4379 K in the 20–50 °C temperature range and a temperature sensitivity of −4.95%/K at room temperature (25 °C). The change of impedance with relative humidity was monitored at 25 and 50 °C for a relative humidity (RH) change of 40 to 90% in the 42 Hzπ1 MHz frequency range. At 100 Hz and 25 °C, the sensitivity of 327.36 ± 80.12 kΩ/%RH was determined, showing that nickel manganite obtained by electrospinning has potential as a multifunctional material for combined humidity and temperature sensing.