Cargando…

Methanolic Extract of Piper sarmentosum Attenuates Obesity and Hyperlipidemia in Fructose-Induced Metabolic Syndrome Rats

Obesity and hyperlipidemia are metabolic dysregulations that arise from poor lifestyle and unhealthy dietary intakes. These co-morbidity conditions are risk factors for vascular diseases. Piper sarmentosum (PS) is a nutritious plant that has been shown to pose various phytochemicals and pharmacologi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Sivanesan Raja, Mohd Ramli, Elvy Suhana, Abdul Nasir, Nurul Alimah, Mohd Ismail, Nafeeza, Mohd Fahami, Nur Azlina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271521/
https://www.ncbi.nlm.nih.gov/pubmed/34210097
http://dx.doi.org/10.3390/molecules26133985
Descripción
Sumario:Obesity and hyperlipidemia are metabolic dysregulations that arise from poor lifestyle and unhealthy dietary intakes. These co-morbidity conditions are risk factors for vascular diseases. Piper sarmentosum (PS) is a nutritious plant that has been shown to pose various phytochemicals and pharmacological actions. This study aimed to investigate the effect of PS on obesity and hyperlipidemia in an animal model. Forty male Wistar rats were randomly divided into five experimental groups. The groups were as follows: UG—Untreated group; CTRL—control; FDW—olive oil + 20% fructose; FDW-PS—PS (125 mg/kg) + 20% fructose; FDW-NGN—naringin (100 mg/kg) + 20% fructose. Fructose drinking water was administered daily for 12 weeks ad libitum to induce metabolic abnormality. Treatment was administered at week 8 for four weeks via oral gavage. The rats were sacrificed with anesthesia at the end of the experimental period. Blood, liver, and visceral fat were collected for further analysis. The consumption of 20% fructose water by Wistar rats for eight weeks displayed a tremendous increment in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, leptin, and reduced the levels of HDL and adiponectin as well as adipocyte hypertrophy. Following the treatment period, FDW-PS and FDW-NGN showed a significant reduction in body weight, fat mass, percentage fat, LDL, TG, TC, HMG-CoA reductase, and leptin with an increment in the levels of HDL and adiponectin compared to the FDW group. FDW-PS and FDW-NGN also showed adipocyte hypotrophy compared to the FDW group. In conclusion, oral administration of 125 mg/kg PS methanolic extract to fructose-induced obese rats led to significant amelioration of obesity and hyperlipidemia through suppressing the adipocytes and inhibiting HMG-CoA reductase. PS has the potential to be used as an alternative or adjunct therapy for obesity and hyperlipidemia.