Cargando…
Federated Compressed Learning Edge Computing Framework with Ensuring Data Privacy for PM2.5 Prediction in Smart City Sensing Applications
The sparse data in PM2.5 air quality monitoring systems is frequently happened on large-scale smart city sensing applications, which is collected via massive sensors. Moreover, it could be affected by inefficient node deployment, insufficient communication, and fragmented records, which is the main...
Autores principales: | Putra, Karisma Trinanda, Chen, Hsing-Chung, Prayitno, Ogiela, Marek R., Chou, Chao-Lung, Weng, Chien-Erh, Shae, Zon-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271576/ https://www.ncbi.nlm.nih.gov/pubmed/34283140 http://dx.doi.org/10.3390/s21134586 |
Ejemplares similares
-
An Implementation of Trust Chain Framework with Hierarchical Content Identifier Mechanism by Using Blockchain Technology
por: Chen, Hsing-Chung, et al.
Publicado: (2022) -
FLPP: A Federated-Learning-Based Scheme for Privacy Protection in Mobile Edge Computing
por: Cheng, Zhimo, et al.
Publicado: (2023) -
Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing
por: Xiao, Di, et al.
Publicado: (2020) -
On privacy-preserving protocols for smart metering systems: security and privacy in smart grids
por: Borges de Oliveira, Fábio
Publicado: (2017) -
Security and privacy in smart grid
por: Abdallah, Asmaa, et al.
Publicado: (2018)