Cargando…

A System for Monitoring of Broadband FMR Phenomenon in Low-Carbon Steel Films Subjected to Deformations

Stresses and deformations are some of the main factors influencing the mechanical and magnetic properties of steels. Resonance methods, based on the utilization of high-frequency electromagnetic fields, are the ones that can provide information about the course of the magnetization process. Moreover...

Descripción completa

Detalles Bibliográficos
Autores principales: Psuj, Grzegorz, Lopato, Przemyslaw, Maciusowicz, Michal, Herbko, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271596/
https://www.ncbi.nlm.nih.gov/pubmed/34201856
http://dx.doi.org/10.3390/s21134301
Descripción
Sumario:Stresses and deformations are some of the main factors influencing the mechanical and magnetic properties of steels. Resonance methods, based on the utilization of high-frequency electromagnetic fields, are the ones that can provide information about the course of the magnetization process. Moreover, according to skin effect, these methods may show sensitivity to surface deformations of the examined materials as well. As a rule, however, they are used to study the properties of materials of very limited sizes. This paper presents an approach in which a system based on the ferromagnetic resonance method FMR was considered for monitoring changes of characteristics related to magnetization dynamics of steel elements subjected to deformations. First, a solution was proposed, and then a numerical analysis, as well as a construction of the system, were presented. During the study, the possibility of carrying out measurements in a wide range of electromagnetic field conditions, enabling local inspection on structures, was also analysed. The system operation was verified using a set of samples made of low carbon steel film, representing distinct states of deformation. The obtained results make it possible to clearly distinguish changes in magnetic conditions, pointing to changes in the resultant magnetic anisotropy caused by the straining process.