Cargando…

Nanobiocomposite Polymer as a Filter Nanosponge for Wastewater Treatment

A multifunctional nanobiocomposite polymer was developed in this study through a cross-linking polymerization of cyclodextrin with phosphorylated multi-walled carbon nanotubes followed by sol-gel to incorporate TiO(2) and Ag nanoparticles. This work’s novelty was to prove that the developed nanobioc...

Descripción completa

Detalles Bibliográficos
Autores principales: Taka, Anny Leudjo, Fosso-Kankeu, Elvis, Mbianda, Xavier Yangkou, Klink, Michael, Naidoo, Eliazer Bobby
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271603/
https://www.ncbi.nlm.nih.gov/pubmed/34208837
http://dx.doi.org/10.3390/molecules26133992
Descripción
Sumario:A multifunctional nanobiocomposite polymer was developed in this study through a cross-linking polymerization of cyclodextrin with phosphorylated multi-walled carbon nanotubes followed by sol-gel to incorporate TiO(2) and Ag nanoparticles. This work’s novelty was to prove that the developed nanobiocomposite polymer is a potential filter nanosponge capable of removing organic, inorganic, and microorganisms’ pollutants from wastewater samples. The synthesized multifunctional nanobiocomposite polymer was characterized using a range of spectroscopy and electron microscopy techniques. Fourier-transform infrared (FTIR) confirmed the presence of oxygen-containing groups on the developed nanobiocomposite polymer and carbamate linkage (NH(CO)) distinctive peak at around 1645 cm(−1), which is evidence that the polymerization reaction was successful. The scanning electron microscopy (SEM) image shows that the developed nanobiocomposite polymer has a rough surface. The Dubinin–Radushkevich and the pseudo-second-order kinetic models best described the adsorption mechanism of Co(2+) and TCE’s onto pMWCNT/CD/TiO(2)-Ag. The efficacy of the developed nanobiocomposite polymer to act as disinfectant material in an environmental media (e.g., sewage wastewater sample) compared to the enriched media (e.g., nutrient Muller Hinton broth) was investigated. From the results obtained, in an environmental media, pMWCNT/CD/TiO(2)-Ag nanobiocomposite polymer can alter the bacteria’s metabolic process by inhibiting the growth and killing the bacteria, whereas, in enriched media, the bacteria’s growth was retarded.