Cargando…
Spatial Autoregressive Model for Estimation of Visitors’ Dynamic Agglomeration Patterns Near Event Location
The rapid development of ubiquitous mobile computing has enabled the collection of new types of massive traffic data to understand collective movement patterns in social spaces. Contributing to the understanding of crowd formation and dispersal in populated areas, we developed a model of visitors’ d...
Autores principales: | Ban, Takumi, Usui, Tomotaka, Yamamoto, Toshiyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271624/ https://www.ncbi.nlm.nih.gov/pubmed/34283103 http://dx.doi.org/10.3390/s21134577 |
Ejemplares similares
-
Non-Iterative Multiscale Estimation for Spatial Autoregressive Geographically Weighted Regression Models
por: Gao, Shi-Jie, et al.
Publicado: (2023) -
Spatial Pattern Evolution and Influencing Factors on Industrial Agglomeration: Evidence from Pearl River Delta Urban Agglomeration
por: Huang, Yan, et al.
Publicado: (2022) -
Dynamic cyber risk estimation with competitive quantile autoregression
por: Dzhamtyrova, Raisa, et al.
Publicado: (2022) -
Retracted: Spatial Pattern Evolution and Influencing Factors on Industrial Agglomeration: Evidence from Pearl River Delta Urban Agglomeration
por: Environmental and Public Health, Journal of
Publicado: (2023) -
Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model
por: Chen, Chieh-Fan, et al.
Publicado: (2011)