Cargando…
Emotion Recognition on Edge Devices: Training and Deployment
Emotion recognition, among other natural language processing tasks, has greatly benefited from the use of large transformer models. Deploying these models on resource-constrained devices, however, is a major challenge due to their computational cost. In this paper, we show that the combination of la...
Autores principales: | Pandelea, Vlad, Ragusa, Edoardo, Apicella, Tommaso, Gastaldo, Paolo, Cambria, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271649/ https://www.ncbi.nlm.nih.gov/pubmed/34209251 http://dx.doi.org/10.3390/s21134496 |
Ejemplares similares
-
Light-FER: A Lightweight Facial Emotion Recognition System on Edge Devices
por: Pascual, Alexander M., et al.
Publicado: (2022) -
Model pruning based on filter similarity for edge device deployment
por: Wu, Tingting, et al.
Publicado: (2023) -
Power Efficient Machine Learning Models Deployment on Edge IoT Devices
por: Fanariotis, Anastasios, et al.
Publicado: (2023) -
Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment
por: Cheruvu, Sunil, et al.
Publicado: (2019) -
LDAKM-EIoT: Lightweight Device Authentication and Key Management Mechanism for Edge-Based IoT Deployment
por: Wazid, Mohammad, et al.
Publicado: (2019)