Cargando…
Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane Harvester
Measuring the mass flow of sugarcane in real-time is essential for harvester automation and crop monitoring. Data integration from multiple sensors should be an alternative to receive more reliable, accurate, and valuable predictions than data delivered by a single sensor. In this sense, the objecti...
Autores principales: | de Lima, Jeovano de Jesus Alves, Maldaner, Leonardo Felipe, Molin, José Paulo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271662/ https://www.ncbi.nlm.nih.gov/pubmed/34282796 http://dx.doi.org/10.3390/s21134530 |
Ejemplares similares
-
Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy
por: Corrêdo, Lucas de Paula, et al.
Publicado: (2021) -
Temperature prediction of solar greenhouse based on NARX regression neural network
por: Gao, Maosheng, et al.
Publicado: (2023) -
Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach()()()()
por: Steinacker, Marie, et al.
Publicado: (2023) -
Prediction of Biceps Muscle Electromyogram Signal Using a NARX Neural Network
por: Khodadadi, Vahid, et al.
Publicado: (2023) -
Prediction of ground-level ozone by SOM-NARX hybrid neural network based on the correlation of predictors
por: Xiong, Qinqing, et al.
Publicado: (2022)