Cargando…
An Optimized Trajectory Planner and Motion Controller Framework for Autonomous Driving in Unstructured Environments
This paper proposes an optimized trajectory planner and motion planner framework, which aim to deal with obstacle avoidance along a reference road for autonomous driving in unstructured environments. The trajectory planning problem is decomposed into lateral and longitudinal planning sub-tasks along...
Autores principales: | Xiong, Lu, Fu, Zhiqiang, Zeng, Dequan, Leng, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271740/ https://www.ncbi.nlm.nih.gov/pubmed/34199118 http://dx.doi.org/10.3390/s21134409 |
Ejemplares similares
-
Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving
por: Du, Mingbo, et al.
Publicado: (2016) -
HFO-LADRC Lateral Motion Controller for Autonomous Road Sweeper
por: Zeng, Dequan, et al.
Publicado: (2020) -
Autonomous Reading of Gauges in Unstructured Environments
por: Milana, Edoardo, et al.
Publicado: (2022) -
Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment
por: Chen, Jiajia, et al.
Publicado: (2014) -
Twisting for soft intelligent autonomous robot in unstructured environments
por: Zhao, Yao, et al.
Publicado: (2022)