Cargando…
A Saliency-Based Sparse Representation Method for Point Cloud Simplification
High-resolution 3D scanning devices produce high-density point clouds, which require a large capacity of storage and time-consuming processing algorithms. In order to reduce both needs, it is common to apply surface simplification algorithms as a preprocessing stage. The goal of point cloud simplifi...
Autores principales: | Leal, Esmeide, Sanchez-Torres, German, Branch-Bedoya, John W., Abad, Francisco, Leal, Nallig |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271750/ https://www.ncbi.nlm.nih.gov/pubmed/34201455 http://dx.doi.org/10.3390/s21134279 |
Ejemplares similares
-
Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement
por: Leal, Esmeide, et al.
Publicado: (2020) -
Non-Local SVD Denoising of MRI Based on Sparse Representations
por: Leal, Nallig, et al.
Publicado: (2020) -
Saliency Detection Using Sparse and Nonlinear Feature Representation
por: Anwar, Shahzad, et al.
Publicado: (2014) -
Feature-preserving simplification framework for 3D point cloud
por: Xu, Xueli, et al.
Publicado: (2022) -
Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping
por: Qiao, Yuhui, et al.
Publicado: (2023)