Cargando…
Gait-Based Implicit Authentication Using Edge Computing and Deep Learning for Mobile Devices
Implicit authentication mechanisms are expected to prevent security and privacy threats for mobile devices using behavior modeling. However, recently, researchers have demonstrated that the performance of behavioral biometrics is insufficiently accurate. Furthermore, the unique characteristics of mo...
Autores principales: | Zeng, Xin, Zhang, Xiaomei, Yang, Shuqun, Shi, Zhicai, Chi, Chihung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271781/ https://www.ncbi.nlm.nih.gov/pubmed/34283149 http://dx.doi.org/10.3390/s21134592 |
Ejemplares similares
-
Gait Recognition as an Authentication Method for Mobile Devices
por: Axente, Matei-Sorin, et al.
Publicado: (2020) -
Deep Learning-Based Construction and Processing of Multimodal Corpus for IoT Devices in Mobile Edge Computing
por: Liang, Chu, et al.
Publicado: (2022) -
Radio Frequency Fingerprint-Based Intelligent Mobile Edge Computing for Internet of Things Authentication †
por: Chen, Songlin, et al.
Publicado: (2019) -
Smartphone Authentication System Using Personal Gaits and a Deep Learning Model
por: Choi, Jiwoo, et al.
Publicado: (2023) -
Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
por: Yang, Shicheng, et al.
Publicado: (2022)