Cargando…
High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery
Red tides caused by Margalefidinium polykrikoides occur continuously along the southern coast of Korea, where there are many aquaculture cages, and therefore, prompt monitoring of bloom water is required to prevent considerable damage. Satellite-based ocean-color sensors are widely used for detectin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271788/ https://www.ncbi.nlm.nih.gov/pubmed/34209710 http://dx.doi.org/10.3390/s21134447 |
_version_ | 1783721074226102272 |
---|---|
author | Shin, Jisun Jo, Young-Heon Ryu, Joo-Hyung Khim, Boo-Keun Kim, Soo Mee |
author_facet | Shin, Jisun Jo, Young-Heon Ryu, Joo-Hyung Khim, Boo-Keun Kim, Soo Mee |
author_sort | Shin, Jisun |
collection | PubMed |
description | Red tides caused by Margalefidinium polykrikoides occur continuously along the southern coast of Korea, where there are many aquaculture cages, and therefore, prompt monitoring of bloom water is required to prevent considerable damage. Satellite-based ocean-color sensors are widely used for detecting red tide blooms, but their low spatial resolution restricts coastal observations. Contrarily, terrestrial sensors with a high spatial resolution are good candidate sensors, despite the lack of spectral resolution and bands for red tide detection. In this study, we developed a U-Net deep learning model for detecting M. polykrikoides blooms along the southern coast of Korea from PlanetScope imagery with a high spatial resolution of 3 m. The U-Net model was trained with four different datasets that were constructed with randomly or non-randomly chosen patches consisting of different ratios of red tide and non-red tide pixels. The qualitative and quantitative assessments of the conventional red tide index (RTI) and four U-Net models suggest that the U-Net model, which was trained with a dataset of non-randomly chosen patches including non-red tide patches, outperformed RTI in terms of sensitivity, precision, and F-measure level, accounting for an increase of 19.84%, 44.84%, and 28.52%, respectively. The M. polykrikoides map derived from U-Net provides the most reasonable red tide patterns in all water areas. Combining high spatial resolution images and deep learning approaches represents a good solution for the monitoring of red tides over coastal regions. |
format | Online Article Text |
id | pubmed-8271788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82717882021-07-11 High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery Shin, Jisun Jo, Young-Heon Ryu, Joo-Hyung Khim, Boo-Keun Kim, Soo Mee Sensors (Basel) Article Red tides caused by Margalefidinium polykrikoides occur continuously along the southern coast of Korea, where there are many aquaculture cages, and therefore, prompt monitoring of bloom water is required to prevent considerable damage. Satellite-based ocean-color sensors are widely used for detecting red tide blooms, but their low spatial resolution restricts coastal observations. Contrarily, terrestrial sensors with a high spatial resolution are good candidate sensors, despite the lack of spectral resolution and bands for red tide detection. In this study, we developed a U-Net deep learning model for detecting M. polykrikoides blooms along the southern coast of Korea from PlanetScope imagery with a high spatial resolution of 3 m. The U-Net model was trained with four different datasets that were constructed with randomly or non-randomly chosen patches consisting of different ratios of red tide and non-red tide pixels. The qualitative and quantitative assessments of the conventional red tide index (RTI) and four U-Net models suggest that the U-Net model, which was trained with a dataset of non-randomly chosen patches including non-red tide patches, outperformed RTI in terms of sensitivity, precision, and F-measure level, accounting for an increase of 19.84%, 44.84%, and 28.52%, respectively. The M. polykrikoides map derived from U-Net provides the most reasonable red tide patterns in all water areas. Combining high spatial resolution images and deep learning approaches represents a good solution for the monitoring of red tides over coastal regions. MDPI 2021-06-29 /pmc/articles/PMC8271788/ /pubmed/34209710 http://dx.doi.org/10.3390/s21134447 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shin, Jisun Jo, Young-Heon Ryu, Joo-Hyung Khim, Boo-Keun Kim, Soo Mee High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title | High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title_full | High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title_fullStr | High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title_full_unstemmed | High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title_short | High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery |
title_sort | high spatial-resolution red tide detection in the southern coast of korea using u-net from planetscope imagery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271788/ https://www.ncbi.nlm.nih.gov/pubmed/34209710 http://dx.doi.org/10.3390/s21134447 |
work_keys_str_mv | AT shinjisun highspatialresolutionredtidedetectioninthesoutherncoastofkoreausingunetfromplanetscopeimagery AT joyoungheon highspatialresolutionredtidedetectioninthesoutherncoastofkoreausingunetfromplanetscopeimagery AT ryujoohyung highspatialresolutionredtidedetectioninthesoutherncoastofkoreausingunetfromplanetscopeimagery AT khimbookeun highspatialresolutionredtidedetectioninthesoutherncoastofkoreausingunetfromplanetscopeimagery AT kimsoomee highspatialresolutionredtidedetectioninthesoutherncoastofkoreausingunetfromplanetscopeimagery |