Cargando…
Representation Learning for Fine-Grained Change Detection
Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. A...
Autores principales: | Mahony, Niall O’, Campbell, Sean, Krpalkova, Lenka, Carvalho, Anderson, Walsh, Joseph, Riordan, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271830/ https://www.ncbi.nlm.nih.gov/pubmed/34209075 http://dx.doi.org/10.3390/s21134486 |
Ejemplares similares
-
Scene Uyghur Text Detection Based on Fine-Grained Feature Representation
por: Wang, Yiwen, et al.
Publicado: (2022) -
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
por: Wong, Daniel R., et al.
Publicado: (2023) -
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
por: Wong, Daniel R., et al.
Publicado: (2023) -
Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory
por: Katshu, Mohammad Zia Ul Haq, et al.
Publicado: (2014) -
Learning fine-grained estimation of physiological states from coarse-grained labels by distribution restoration
por: Qin, Zengyi, et al.
Publicado: (2020)