Cargando…
Efficient Cell Segmentation from Electroluminescent Images of Single-Crystalline Silicon Photovoltaic Modules and Cell-Based Defect Identification Using Deep Learning with Pseudo-Colorization
Solar cells may possess defects during the manufacturing process in photovoltaic (PV) industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects are required to be identified. Conventional defect inspection in industries mainly depends on manual defect inspection...
Autores principales: | Lin, Horng-Horng, Dandage, Harshad Kumar, Lin, Keh-Moh, Lin, You-Teh, Chen, Yeou-Jiunn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271833/ https://www.ncbi.nlm.nih.gov/pubmed/34201774 http://dx.doi.org/10.3390/s21134292 |
Ejemplares similares
-
Solution-Processable
Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices
por: Zysman-Colman, Eli, et al.
Publicado: (2016) -
Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images
por: Wang, Junjie, et al.
Publicado: (2022) -
Thermal delamination of end-of-life crystalline silicon photovoltaic modules
por: Dobra, Tudor, et al.
Publicado: (2021) -
Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry
por: ur Rehman, Atteq, et al.
Publicado: (2013) -
Greatly Enhanced Photovoltaic Performance of Crystalline Silicon Solar Cells via Metal Oxide
por: Zhou, Lingling, et al.
Publicado: (2018)