Cargando…
General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles †
This paper proposes a multipurpose reinforcement learning based low-level multirotor unmanned aerial vehicles control structure constructed using neural networks with model-free training. Other low-level reinforcement learning controllers developed in studies have only been applicable to a model-spe...
Autores principales: | Pi, Chen-Huan, Dai, Yi-Wei, Hu, Kai-Chun, Cheng, Stone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271845/ https://www.ncbi.nlm.nih.gov/pubmed/34283119 http://dx.doi.org/10.3390/s21134560 |
Ejemplares similares
-
Indoor Visual Exploration with Multi-Rotor Aerial Robotic Vehicles
por: Rousseas, Panagiotis, et al.
Publicado: (2022) -
Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection
por: Wang, Juan, et al.
Publicado: (2023) -
EKF-Based Parameter Identification of Multi-Rotor Unmanned Aerial VehiclesModels
por: Munguía, Rodrigo, et al.
Publicado: (2019) -
Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles
por: Meng, Yanhua, et al.
Publicado: (2022) -
Autonomous Multi-Rotor Aerial Platform for Air Pollution Monitoring
por: Cozma, Alexandru, et al.
Publicado: (2022)