Cargando…
Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation
With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inhere...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271859/ https://www.ncbi.nlm.nih.gov/pubmed/34283110 http://dx.doi.org/10.3390/s21134549 |
_version_ | 1783721089677918208 |
---|---|
author | Hussein, Burhan Rashid Malik, Owais Ahmed Ong, Wee-Hong Slik, Johan Willem Frederik |
author_facet | Hussein, Burhan Rashid Malik, Owais Ahmed Ong, Wee-Hong Slik, Johan Willem Frederik |
author_sort | Hussein, Burhan Rashid |
collection | PubMed |
description | With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inherent challenge to deal with the sheets containing other non-plant objects such as color charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping, damaged, and intact individual leaves exist together with other plant organs such as stems and fruits, which increases the complexity of leaf trait extraction and analysis. Focusing on segmentation and trait extraction on individual intact herbarium leaves, this study proposes a pipeline consisting of deep learning semantic segmentation model (DeepLabv3+), connected component analysis, and a single-leaf classifier trained on binary images to automate the extraction of an intact individual leaf with phenotypic traits. The proposed method achieved a higher F1-score for both the in-house dataset (96%) and on a publicly available herbarium dataset (93%) compared to object detection-based approaches including Faster R-CNN and YOLOv5. Furthermore, using the proposed approach, the phenotypic measurements extracted from the segmented individual leaves were closer to the ground truth measurements, which suggests the importance of the segmentation process in handling background noise. Compared to the object detection-based approaches, the proposed method showed a promising direction toward an autonomous tool for the extraction of individual leaves together with their trait data directly from herbarium specimen images. |
format | Online Article Text |
id | pubmed-8271859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82718592021-07-11 Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation Hussein, Burhan Rashid Malik, Owais Ahmed Ong, Wee-Hong Slik, Johan Willem Frederik Sensors (Basel) Article With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inherent challenge to deal with the sheets containing other non-plant objects such as color charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping, damaged, and intact individual leaves exist together with other plant organs such as stems and fruits, which increases the complexity of leaf trait extraction and analysis. Focusing on segmentation and trait extraction on individual intact herbarium leaves, this study proposes a pipeline consisting of deep learning semantic segmentation model (DeepLabv3+), connected component analysis, and a single-leaf classifier trained on binary images to automate the extraction of an intact individual leaf with phenotypic traits. The proposed method achieved a higher F1-score for both the in-house dataset (96%) and on a publicly available herbarium dataset (93%) compared to object detection-based approaches including Faster R-CNN and YOLOv5. Furthermore, using the proposed approach, the phenotypic measurements extracted from the segmented individual leaves were closer to the ground truth measurements, which suggests the importance of the segmentation process in handling background noise. Compared to the object detection-based approaches, the proposed method showed a promising direction toward an autonomous tool for the extraction of individual leaves together with their trait data directly from herbarium specimen images. MDPI 2021-07-02 /pmc/articles/PMC8271859/ /pubmed/34283110 http://dx.doi.org/10.3390/s21134549 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hussein, Burhan Rashid Malik, Owais Ahmed Ong, Wee-Hong Slik, Johan Willem Frederik Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title | Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title_full | Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title_fullStr | Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title_full_unstemmed | Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title_short | Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation |
title_sort | automated extraction of phenotypic leaf traits of individual intact herbarium leaves from herbarium specimen images using deep learning based semantic segmentation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271859/ https://www.ncbi.nlm.nih.gov/pubmed/34283110 http://dx.doi.org/10.3390/s21134549 |
work_keys_str_mv | AT husseinburhanrashid automatedextractionofphenotypicleaftraitsofindividualintactherbariumleavesfromherbariumspecimenimagesusingdeeplearningbasedsemanticsegmentation AT malikowaisahmed automatedextractionofphenotypicleaftraitsofindividualintactherbariumleavesfromherbariumspecimenimagesusingdeeplearningbasedsemanticsegmentation AT ongweehong automatedextractionofphenotypicleaftraitsofindividualintactherbariumleavesfromherbariumspecimenimagesusingdeeplearningbasedsemanticsegmentation AT slikjohanwillemfrederik automatedextractionofphenotypicleaftraitsofindividualintactherbariumleavesfromherbariumspecimenimagesusingdeeplearningbasedsemanticsegmentation |