Cargando…
Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation
With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inhere...
Autores principales: | Hussein, Burhan Rashid, Malik, Owais Ahmed, Ong, Wee-Hong, Slik, Johan Willem Frederik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271859/ https://www.ncbi.nlm.nih.gov/pubmed/34283110 http://dx.doi.org/10.3390/s21134549 |
Ejemplares similares
-
Going deeper in the automated identification of Herbarium specimens
por: Carranza-Rojas, Jose, et al.
Publicado: (2017) -
Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification
por: Unger, Jakob, et al.
Publicado: (2016) -
LeafMachine: Using machine learning to automate leaf trait extraction from digitized herbarium specimens
por: Weaver, William N., et al.
Publicado: (2020) -
Development of a system for the automated identification of herbarium specimens with high accuracy
por: Shirai, Masato, et al.
Publicado: (2022) -
Continental‐scale metagenomics, BLAST searches, and herbarium specimens: The Australian Microbiome Initiative and the National Herbarium of Victoria
por: Davoodian, Naveed, et al.
Publicado: (2020)