Cargando…
Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation
Background: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271899/ https://www.ncbi.nlm.nih.gov/pubmed/34279400 http://dx.doi.org/10.3390/molecules26134061 |
_version_ | 1783721099193745408 |
---|---|
author | Haroun, Michelyne Tratrat, Christophe Petrou, Anthi Geronikaki, Athina Ivanov, Marija Ćirić, Ana Soković, Marina Nagaraja, Sreeharsha Venugopala, Katharigatta Narayanaswamy Balachandran Nair, Anroop Elsewedy, Heba S. Kochkar, Hafedh |
author_facet | Haroun, Michelyne Tratrat, Christophe Petrou, Anthi Geronikaki, Athina Ivanov, Marija Ćirić, Ana Soković, Marina Nagaraja, Sreeharsha Venugopala, Katharigatta Narayanaswamy Balachandran Nair, Anroop Elsewedy, Heba S. Kochkar, Hafedh |
author_sort | Haroun, Michelyne |
collection | PubMed |
description | Background: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. Methods: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF(3)-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. Results: All compounds showed antibacterial activity with MIC in range of 0.12–0.75 mg/mL and MBC at 0.25–>1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. Conclusion: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF(3) substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds. |
format | Online Article Text |
id | pubmed-8271899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82718992021-07-11 Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation Haroun, Michelyne Tratrat, Christophe Petrou, Anthi Geronikaki, Athina Ivanov, Marija Ćirić, Ana Soković, Marina Nagaraja, Sreeharsha Venugopala, Katharigatta Narayanaswamy Balachandran Nair, Anroop Elsewedy, Heba S. Kochkar, Hafedh Molecules Article Background: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. Methods: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF(3)-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. Results: All compounds showed antibacterial activity with MIC in range of 0.12–0.75 mg/mL and MBC at 0.25–>1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. Conclusion: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF(3) substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds. MDPI 2021-07-02 /pmc/articles/PMC8271899/ /pubmed/34279400 http://dx.doi.org/10.3390/molecules26134061 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Haroun, Michelyne Tratrat, Christophe Petrou, Anthi Geronikaki, Athina Ivanov, Marija Ćirić, Ana Soković, Marina Nagaraja, Sreeharsha Venugopala, Katharigatta Narayanaswamy Balachandran Nair, Anroop Elsewedy, Heba S. Kochkar, Hafedh Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title | Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title_full | Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title_fullStr | Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title_full_unstemmed | Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title_short | Exploration of the Antimicrobial Effects of Benzothiazolylthiazolidin-4-One and In Silico Mechanistic Investigation |
title_sort | exploration of the antimicrobial effects of benzothiazolylthiazolidin-4-one and in silico mechanistic investigation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271899/ https://www.ncbi.nlm.nih.gov/pubmed/34279400 http://dx.doi.org/10.3390/molecules26134061 |
work_keys_str_mv | AT harounmichelyne explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT tratratchristophe explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT petrouanthi explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT geronikakiathina explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT ivanovmarija explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT ciricana explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT sokovicmarina explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT nagarajasreeharsha explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT venugopalakatharigattanarayanaswamy explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT balachandrannairanroop explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT elsewedyhebas explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation AT kochkarhafedh explorationoftheantimicrobialeffectsofbenzothiazolylthiazolidin4oneandinsilicomechanisticinvestigation |