Cargando…
The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement
Nanosilica produced from physically-processed white rice husk ash agricultural waste can be incorporated into geopolymer cement-based materials to improve the mechanical and micro performance. This study aimed to investigate the effect of natural nanosilica on the mechanical properties and microstru...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271931/ https://www.ncbi.nlm.nih.gov/pubmed/34209182 http://dx.doi.org/10.3390/polym13132178 |
_version_ | 1783721106885050368 |
---|---|
author | Rahmawati, Cut Aprilia, Sri Saidi, Taufiq Aulia, Teuku Budi Hadi, Agung Efriyo |
author_facet | Rahmawati, Cut Aprilia, Sri Saidi, Taufiq Aulia, Teuku Budi Hadi, Agung Efriyo |
author_sort | Rahmawati, Cut |
collection | PubMed |
description | Nanosilica produced from physically-processed white rice husk ash agricultural waste can be incorporated into geopolymer cement-based materials to improve the mechanical and micro performance. This study aimed to investigate the effect of natural nanosilica on the mechanical properties and microstructure of geopolymer cement. It examined the mechanical behavior of geopolymer paste reinforced with 2, 3, and 4 wt% nanosilica. The tests of compressive strength, direct tensile strength, three bending tests, Scanning Electron Microscope-Energy Dispersive X-ray (SEM/EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR) were undertaken to evaluate the effect of nanosilica addition to the geopolymer paste. The addition of 2 wt% nanosilica in the geopolymer paste increased the compressive strength by 22%, flexural strength by 82%, and fracture toughness by 82% but decreased the direct tensile strength by 31%. The microstructure analysis using SEM, XRD, and FTIR showed the formation of calcium alumina-silicate hydrate (C–A–S–H) gel. The SEM images also revealed a compact and cohesive geopolymer matrix, indicating that the mechanical properties of geopolymers with 2 wt% nanosilica were improved. Thus, it is feasible for nanosilica to be used as a binder. |
format | Online Article Text |
id | pubmed-8271931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82719312021-07-11 The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement Rahmawati, Cut Aprilia, Sri Saidi, Taufiq Aulia, Teuku Budi Hadi, Agung Efriyo Polymers (Basel) Article Nanosilica produced from physically-processed white rice husk ash agricultural waste can be incorporated into geopolymer cement-based materials to improve the mechanical and micro performance. This study aimed to investigate the effect of natural nanosilica on the mechanical properties and microstructure of geopolymer cement. It examined the mechanical behavior of geopolymer paste reinforced with 2, 3, and 4 wt% nanosilica. The tests of compressive strength, direct tensile strength, three bending tests, Scanning Electron Microscope-Energy Dispersive X-ray (SEM/EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR) were undertaken to evaluate the effect of nanosilica addition to the geopolymer paste. The addition of 2 wt% nanosilica in the geopolymer paste increased the compressive strength by 22%, flexural strength by 82%, and fracture toughness by 82% but decreased the direct tensile strength by 31%. The microstructure analysis using SEM, XRD, and FTIR showed the formation of calcium alumina-silicate hydrate (C–A–S–H) gel. The SEM images also revealed a compact and cohesive geopolymer matrix, indicating that the mechanical properties of geopolymers with 2 wt% nanosilica were improved. Thus, it is feasible for nanosilica to be used as a binder. MDPI 2021-06-30 /pmc/articles/PMC8271931/ /pubmed/34209182 http://dx.doi.org/10.3390/polym13132178 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rahmawati, Cut Aprilia, Sri Saidi, Taufiq Aulia, Teuku Budi Hadi, Agung Efriyo The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title | The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title_full | The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title_fullStr | The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title_full_unstemmed | The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title_short | The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement |
title_sort | effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271931/ https://www.ncbi.nlm.nih.gov/pubmed/34209182 http://dx.doi.org/10.3390/polym13132178 |
work_keys_str_mv | AT rahmawaticut theeffectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT apriliasri theeffectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT saiditaufiq theeffectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT auliateukubudi theeffectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT hadiagungefriyo theeffectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT rahmawaticut effectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT apriliasri effectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT saiditaufiq effectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT auliateukubudi effectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement AT hadiagungefriyo effectsofnanosilicaonmechanicalpropertiesandfracturetoughnessofgeopolymercement |