Cargando…
MEG Source Localization via Deep Learning
We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned to single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cor...
Autores principales: | Pantazis, Dimitrios, Adler, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271934/ https://www.ncbi.nlm.nih.gov/pubmed/34206620 http://dx.doi.org/10.3390/s21134278 |
Ejemplares similares
-
An F-ratio-based method for estimating the number of active sources in MEG
por: Giri, Amita, et al.
Publicado: (2023) -
LOCALIZATION OF SPATIALLY EXTENDED BRAIN SOURCES BY FLEXIBLE ALTERNATING PROJECTION (FLEX-AP)
por: Hecker, Lukas, et al.
Publicado: (2023) -
Comparison of beamformer implementations for MEG source localization
por: Jaiswal, Amit, et al.
Publicado: (2020) -
MEG Source Localization Using Invariance of Noise Space
por: Zhang, Junpeng, et al.
Publicado: (2013) -
MEG/EEG Group Analysis With Brainstorm
por: Tadel, François, et al.
Publicado: (2019)