Cargando…
Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties
On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271944/ https://www.ncbi.nlm.nih.gov/pubmed/34208796 http://dx.doi.org/10.3390/polym13132155 |
_version_ | 1783721109933260800 |
---|---|
author | Attallah, Olivia A. Mojicevic, Marija Garcia, Eduardo Lanzagorta Azeem, Muhammad Chen, Yuanyuan Asmawi, Shumayl Brenan Fournet, Margaret |
author_facet | Attallah, Olivia A. Mojicevic, Marija Garcia, Eduardo Lanzagorta Azeem, Muhammad Chen, Yuanyuan Asmawi, Shumayl Brenan Fournet, Margaret |
author_sort | Attallah, Olivia A. |
collection | PubMed |
description | On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (M(w)) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed—identifying both macro and micro routes promoting favourable bioplastics’ production, processability and performance. |
format | Online Article Text |
id | pubmed-8271944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82719442021-07-11 Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties Attallah, Olivia A. Mojicevic, Marija Garcia, Eduardo Lanzagorta Azeem, Muhammad Chen, Yuanyuan Asmawi, Shumayl Brenan Fournet, Margaret Polymers (Basel) Review On a score sheet for plastics, bioplastics have a medium score for combined mechanical performance and a high score for biodegradability with respect to counterpart petroleum-based plastics. Analysis quickly confirms that endeavours to increase the mechanical performance score for bioplastics would be far more achievable than delivering adequate biodegradability for the recalcitrant plastics, while preserving their impressive mechanical performances. Key architectural features of both bioplastics and petroleum-based plastics, namely, molecular weight (M(w)) and crystallinity, which underpin mechanical performance, typically have an inversely dependent relationship with biodegradability. In the case of bioplastics, both macro and micro strategies with dual positive correlation on mechanical and biodegradability performance, are available to address this dilemma. Regarding the macro approach, processing using selected fillers, plasticisers and compatibilisers have been shown to enhance both targeted mechanical properties and biodegradability within bioplastics. Whereas, regarding the micro approach, a whole host of bio and chemical synthetic routes are uniquely available, to produce improved bioplastics. In this review, the main characteristics of bioplastics in terms of mechanical and barrier performances, as well as biodegradability, have been assessed—identifying both macro and micro routes promoting favourable bioplastics’ production, processability and performance. MDPI 2021-06-30 /pmc/articles/PMC8271944/ /pubmed/34208796 http://dx.doi.org/10.3390/polym13132155 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Attallah, Olivia A. Mojicevic, Marija Garcia, Eduardo Lanzagorta Azeem, Muhammad Chen, Yuanyuan Asmawi, Shumayl Brenan Fournet, Margaret Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title | Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title_full | Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title_fullStr | Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title_full_unstemmed | Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title_short | Macro and Micro Routes to High Performance Bioplastics: Bioplastic Biodegradability and Mechanical and Barrier Properties |
title_sort | macro and micro routes to high performance bioplastics: bioplastic biodegradability and mechanical and barrier properties |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271944/ https://www.ncbi.nlm.nih.gov/pubmed/34208796 http://dx.doi.org/10.3390/polym13132155 |
work_keys_str_mv | AT attallaholiviaa macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT mojicevicmarija macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT garciaeduardolanzagorta macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT azeemmuhammad macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT chenyuanyuan macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT asmawishumayl macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties AT brenanfournetmargaret macroandmicroroutestohighperformancebioplasticsbioplasticbiodegradabilityandmechanicalandbarrierproperties |