Cargando…
Attention-Based 3D Human Pose Sequence Refinement Network
Three-dimensional human mesh reconstruction from a single video has made much progress in recent years due to the advances in deep learning. However, previous methods still often reconstruct temporally noisy pose and mesh sequences given in-the-wild video data. To address this problem, we propose a...
Autores principales: | Kim, Do-Yeop, Chang, Ju-Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271996/ https://www.ncbi.nlm.nih.gov/pubmed/34283128 http://dx.doi.org/10.3390/s21134572 |
Ejemplares similares
-
Iterative Pose Refinement for Object Pose Estimation Based on RGBD Data
por: Huang, Shao-Kang, et al.
Publicado: (2020) -
SARN: Shifted Attention Regression Network for 3D Hand Pose Estimation
por: Zhu, Chenfei, et al.
Publicado: (2023) -
Camera Motion Agnostic Method for Estimating 3D Human Poses
por: Kim, Seong Hyun, et al.
Publicado: (2022) -
Pose ResNet: 3D Human Pose Estimation Based on Self-Supervision
por: Bao, Wenxia, et al.
Publicado: (2023) -
MeshLifter: Weakly Supervised Approach for 3D Human Mesh Reconstruction from a Single 2D Pose Based on Loop Structure
por: Jeong, Sunwon, et al.
Publicado: (2020)