Cargando…
Water-Repellent Characteristics of Beech Wood Coated with Parylene-N
In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272000/ https://www.ncbi.nlm.nih.gov/pubmed/34202580 http://dx.doi.org/10.3390/polym13132076 |
_version_ | 1783721123143221248 |
---|---|
author | Köhler, Robert Sauerbier, Philipp Weber, Mirco Wander, Roland-Christian Wieneke, Stephan Viöl, Wolfgang |
author_facet | Köhler, Robert Sauerbier, Philipp Weber, Mirco Wander, Roland-Christian Wieneke, Stephan Viöl, Wolfgang |
author_sort | Köhler, Robert |
collection | PubMed |
description | In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood’s durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 μm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25–34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers. |
format | Online Article Text |
id | pubmed-8272000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82720002021-07-11 Water-Repellent Characteristics of Beech Wood Coated with Parylene-N Köhler, Robert Sauerbier, Philipp Weber, Mirco Wander, Roland-Christian Wieneke, Stephan Viöl, Wolfgang Polymers (Basel) Article In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood’s durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 μm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25–34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers. MDPI 2021-06-24 /pmc/articles/PMC8272000/ /pubmed/34202580 http://dx.doi.org/10.3390/polym13132076 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Köhler, Robert Sauerbier, Philipp Weber, Mirco Wander, Roland-Christian Wieneke, Stephan Viöl, Wolfgang Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title | Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title_full | Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title_fullStr | Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title_full_unstemmed | Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title_short | Water-Repellent Characteristics of Beech Wood Coated with Parylene-N |
title_sort | water-repellent characteristics of beech wood coated with parylene-n |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272000/ https://www.ncbi.nlm.nih.gov/pubmed/34202580 http://dx.doi.org/10.3390/polym13132076 |
work_keys_str_mv | AT kohlerrobert waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen AT sauerbierphilipp waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen AT webermirco waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen AT wanderrolandchristian waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen AT wienekestephan waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen AT violwolfgang waterrepellentcharacteristicsofbeechwoodcoatedwithparylenen |