Cargando…
Asbestos Detection with Fluorescence Microscopy Images and Deep Learning
Fluorescent probes can be used to detect various types of asbestos (serpentine and amphibole groups); however, the fiber counting using our previously developed software was not accurate for samples with low fiber concentration. Machine learning-based techniques (e.g., deep learning) for image analy...
Autores principales: | Cai, Changjie, Nishimura, Tomoki, Hwang, Jooyeon, Hu, Xiao-Ming, Kuroda, Akio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272007/ https://www.ncbi.nlm.nih.gov/pubmed/34283157 http://dx.doi.org/10.3390/s21134582 |
Ejemplares similares
-
Live-cell imaging of macrophage phagocytosis of asbestos fibers under fluorescence microscopy
por: Ishida, Takenori, et al.
Publicado: (2019) -
Molecular Engineering of a Fluorescent Bioprobe for Sensitive and Selective Detection of Amphibole Asbestos
por: Ishida, Takenori, et al.
Publicado: (2013) -
Recent progress and perspectives on the mechanisms underlying Asbestos toxicity
por: Kuroda, Akio
Publicado: (2021) -
Selective Detection of Cu(+) Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy
por: Priessner, Martin, et al.
Publicado: (2021) -
DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning
por: Yang, Sen, et al.
Publicado: (2022)