Cargando…
Analysis of Autoencoders for Network Intrusion Detection †
As network attacks are constantly and dramatically evolving, demonstrating new patterns, intelligent Network Intrusion Detection Systems (NIDS), using deep-learning techniques, have been actively studied to tackle these problems. Recently, various autoencoders have been used for NIDS in order to acc...
Autores principales: | Song, Youngrok, Hyun, Sangwon, Cheong, Yun-Gyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272075/ https://www.ncbi.nlm.nih.gov/pubmed/34201798 http://dx.doi.org/10.3390/s21134294 |
Ejemplares similares
-
Intrusion Detection Model for Industrial Internet of Things Based on Improved Autoencoder
por: Zhang, Wumei, et al.
Publicado: (2022) -
Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT
por: Lopez-Martin, Manuel, et al.
Publicado: (2017) -
Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation
por: Vaiyapuri, Thavavel, et al.
Publicado: (2020) -
Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network
por: Yang, Yanqing, et al.
Publicado: (2019) -
A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT
por: Yao, Wenbin, et al.
Publicado: (2023)