Cargando…
Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study
Multicore polymer micelles and aggregates are assemblies that contain several cores. The dual-length-scale compartmentalized solvophobic–solvophilic molecular environment makes them useful for, e.g., advanced drug delivery, high-precision synthesis platforms, confined catalysis, and sensor device ap...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272115/ https://www.ncbi.nlm.nih.gov/pubmed/34209428 http://dx.doi.org/10.3390/polym13132193 |
_version_ | 1783721149577822208 |
---|---|
author | Javan Nikkhah, Sousa Turunen, Elsi Lepo, Anneli Ala-Nissila, Tapio Sammalkorpi, Maria |
author_facet | Javan Nikkhah, Sousa Turunen, Elsi Lepo, Anneli Ala-Nissila, Tapio Sammalkorpi, Maria |
author_sort | Javan Nikkhah, Sousa |
collection | PubMed |
description | Multicore polymer micelles and aggregates are assemblies that contain several cores. The dual-length-scale compartmentalized solvophobic–solvophilic molecular environment makes them useful for, e.g., advanced drug delivery, high-precision synthesis platforms, confined catalysis, and sensor device applications. However, designing and regulating polymer systems that self-assemble to such morphologies remains a challenge. Using dissipative particle dynamics (DPD) simulations, we demonstrate how simple, three-component linear polymer systems consisting of free solvophilic and solvophobic homopolymers, and di-block copolymers, can self-assemble in solution to form well-defined multicore assemblies. We examine the polymer property range over which multicore assemblies can be expected and how the assemblies can be tuned both in terms of their morphology and structure. For a fixed degree of polymerization, a certain level of hydrophobicity is required for the solvophobic component to lead to formation of multicore assemblies. Additionally, the transition from single-core to multicore requires a relatively high solvophobicity difference between the solvophilic and solvophobic polymer components. Furthermore, if the solvophilic polymer is replaced by a solvophobic species, well-defined multicore–multicompartment aggregates can be obtained. The findings provide guidelines for multicore assemblies’ formation from simple three-component systems and how to control polymer particle morphology and structure. |
format | Online Article Text |
id | pubmed-8272115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82721152021-07-11 Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study Javan Nikkhah, Sousa Turunen, Elsi Lepo, Anneli Ala-Nissila, Tapio Sammalkorpi, Maria Polymers (Basel) Article Multicore polymer micelles and aggregates are assemblies that contain several cores. The dual-length-scale compartmentalized solvophobic–solvophilic molecular environment makes them useful for, e.g., advanced drug delivery, high-precision synthesis platforms, confined catalysis, and sensor device applications. However, designing and regulating polymer systems that self-assemble to such morphologies remains a challenge. Using dissipative particle dynamics (DPD) simulations, we demonstrate how simple, three-component linear polymer systems consisting of free solvophilic and solvophobic homopolymers, and di-block copolymers, can self-assemble in solution to form well-defined multicore assemblies. We examine the polymer property range over which multicore assemblies can be expected and how the assemblies can be tuned both in terms of their morphology and structure. For a fixed degree of polymerization, a certain level of hydrophobicity is required for the solvophobic component to lead to formation of multicore assemblies. Additionally, the transition from single-core to multicore requires a relatively high solvophobicity difference between the solvophilic and solvophobic polymer components. Furthermore, if the solvophilic polymer is replaced by a solvophobic species, well-defined multicore–multicompartment aggregates can be obtained. The findings provide guidelines for multicore assemblies’ formation from simple three-component systems and how to control polymer particle morphology and structure. MDPI 2021-06-30 /pmc/articles/PMC8272115/ /pubmed/34209428 http://dx.doi.org/10.3390/polym13132193 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Javan Nikkhah, Sousa Turunen, Elsi Lepo, Anneli Ala-Nissila, Tapio Sammalkorpi, Maria Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title | Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title_full | Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title_fullStr | Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title_full_unstemmed | Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title_short | Multicore Assemblies from Three-Component Linear Homo-Copolymer Systems: A Coarse-Grained Modeling Study |
title_sort | multicore assemblies from three-component linear homo-copolymer systems: a coarse-grained modeling study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272115/ https://www.ncbi.nlm.nih.gov/pubmed/34209428 http://dx.doi.org/10.3390/polym13132193 |
work_keys_str_mv | AT javannikkhahsousa multicoreassembliesfromthreecomponentlinearhomocopolymersystemsacoarsegrainedmodelingstudy AT turunenelsi multicoreassembliesfromthreecomponentlinearhomocopolymersystemsacoarsegrainedmodelingstudy AT lepoanneli multicoreassembliesfromthreecomponentlinearhomocopolymersystemsacoarsegrainedmodelingstudy AT alanissilatapio multicoreassembliesfromthreecomponentlinearhomocopolymersystemsacoarsegrainedmodelingstudy AT sammalkorpimaria multicoreassembliesfromthreecomponentlinearhomocopolymersystemsacoarsegrainedmodelingstudy |