Cargando…
Clustering-Based Noise Elimination Scheme for Data Pre-Processing for Deep Learning Classifier in Fingerprint Indoor Positioning System
Wi-Fi-based indoor positioning systems have a simple layout and a low cost, and they have gradually become popular in both academia and industry. However, due to the poor stability of Wi-Fi signals, it is difficult to accurately decide the position based on a received signal strength indicator (RSSI...
Autores principales: | Liu, Shuzhi, Sinha, Rashmi Sharan, Hwang, Seung-Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272122/ https://www.ncbi.nlm.nih.gov/pubmed/34202090 http://dx.doi.org/10.3390/s21134349 |
Ejemplares similares
-
DeepLocBox: Reliable Fingerprinting-Based Indoor Area Localization
por: Laska, Marius, et al.
Publicado: (2021) -
Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments
por: Liu, Wen, et al.
Publicado: (2016) -
An Algorithm with Iteration Uncertainty Eliminate Based on Geomagnetic Fingerprint under Mobile Edge Computing for Indoor Localization
por: Li, Jie, et al.
Publicado: (2022) -
DeepNoise: Signal and Noise Disentanglement Based on Classifying Fluorescent Microscopy Images via Deep Learning
por: Yang, Sen, et al.
Publicado: (2022) -
Fingerprint Feature Extraction for Indoor Localization †
por: Jiang, Jehn-Ruey, et al.
Publicado: (2021)