Cargando…

Wide-Field-of-View Longwave Camera for the Characterization of the Earth’s Outgoing Longwave Radiation

The measurement of the Earth’s Outgoing Longwave Radiation plays a key role in climate change monitoring. This measurement requires a compact wide-field-of-view camera, covering the 8–14 µm wavelength range, which is not commercially available. Therefore, we present a novel thermal wide-field-of-vie...

Descripción completa

Detalles Bibliográficos
Autores principales: Schifano, Luca, Smeesters, Lien, Berghmans, Francis, Dewitte, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272138/
https://www.ncbi.nlm.nih.gov/pubmed/34209602
http://dx.doi.org/10.3390/s21134444
Descripción
Sumario:The measurement of the Earth’s Outgoing Longwave Radiation plays a key role in climate change monitoring. This measurement requires a compact wide-field-of-view camera, covering the 8–14 µm wavelength range, which is not commercially available. Therefore, we present a novel thermal wide-field-of-view camera optimized for space applications, featuring a field of view of 140° to image the Earth from limb to limb, while enabling a high spatial resolution of 4.455 km at nadir. Our cost-effective design comprises three germanium lenses, of which only one has a single aspherical surface. It delivers a very good image quality, as shown by the nearly-diffraction-limited performance. Radiative transfer simulations indicate excellent performance of our camera design, enabling an estimate of the broadband Outgoing Longwave Radiation with a random relative error of 4.8%.