Cargando…

Experimental Investigation on the Buckling Capacity of Angle Steel Strengthened at Both Legs Using VaRTM-Processed Unbonded CFRP Laminates

Strengthening steel structures by using carbon fiber reinforced polymer (CFRP) laminates showed a growth trend in the last several years. A similar strengthening technique, known as adhesive bonding, has also been adopted. This paper presented a promising alternative for strengthening steel members...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoresta, Fengky Satria, Nhut, Phan Viet, Nakamoto, Daiki, Matsumoto, Yukihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272153/
https://www.ncbi.nlm.nih.gov/pubmed/34279365
http://dx.doi.org/10.3390/polym13132216
Descripción
Sumario:Strengthening steel structures by using carbon fiber reinforced polymer (CFRP) laminates showed a growth trend in the last several years. A similar strengthening technique, known as adhesive bonding, has also been adopted. This paper presented a promising alternative for strengthening steel members against buckling by using vacuum-assisted resin transfer molding (VaRTM)-processed unbonded CFRP laminates. A total of thirteen slender angle steel members (L65x6), including two control specimens, were prepared and experimentally tested. The specimens were strengthened only at both legs and were allowed to buckle on their weak axes. The test showed that the unbonded CFRP strengthening successfully increased the buckling capacity of the angle steel. The strengthening effect ranged from 7.12% to 69.13%, depending on various parameters (i.e., number of CFRP layers, CFRP length, and angle steel’s slenderness ratio). Flexural stiffness of the CFRP governed the failure modes in terms of location of plastic hinge and direction of buckling curvature.