Cargando…
WDA: An Improved Wasserstein Distance-Based Transfer Learning Fault Diagnosis Method
With the growth of computing power, deep learning methods have recently been widely used in machine fault diagnosis. In order to realize highly efficient diagnosis accuracy, people need to know the detailed health condition of collected signals from equipment. However, in the actual situation, it is...
Autores principales: | Zhu, Zhiyu, Wang, Lanzhi, Peng, Gaoliang, Li, Sijue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272169/ https://www.ncbi.nlm.nih.gov/pubmed/34206979 http://dx.doi.org/10.3390/s21134394 |
Ejemplares similares
-
Wasserstein Distance-Based Deep Leakage from Gradients
por: Wang, Zifan, et al.
Publicado: (2023) -
A Two-Stage, Intelligent Bearing-Fault-Diagnosis Method Using Order-Tracking and a One-Dimensional Convolutional Neural Network with Variable Speeds
por: Ji, Mengyu, et al.
Publicado: (2021) -
Correcting nuisance variation using Wasserstein distance
por: Tabak, Gil, et al.
Publicado: (2020) -
Proxying credit curves via Wasserstein distances
por: Michielon, Matteo, et al.
Publicado: (2022) -
Probability Forecast Combination via Entropy Regularized Wasserstein Distance
por: Cumings-Menon, Ryan, et al.
Publicado: (2020)