Cargando…
Machine Learning Based Object Classification and Identification Scheme Using an Embedded Millimeter-Wave Radar Sensor
A target’s movements and radar cross sections are the key parameters to consider when designing a radar sensor for a given application. This paper shows the feasibility and effectiveness of using 24 GHz radar built-in low-noise microwave amplifiers for detecting an object. For this purpose a supervi...
Autores principales: | Arab, Homa, Ghaffari, Iman, Chioukh, Lydia, Tatu, Serioja, Dufour, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272183/ https://www.ncbi.nlm.nih.gov/pubmed/34201765 http://dx.doi.org/10.3390/s21134291 |
Ejemplares similares
-
Millimeter Wave Multi-Port Interferometric Radar Sensors: Evolution of Fabrication and Characterization Technologies
por: Tatu, Serioja Ovidiu, et al.
Publicado: (2020) -
A 77-GHz Six-Port Sensor for Accurate Near-Field Displacement and Doppler Measurements
por: Arab, Homa, et al.
Publicado: (2018) -
Millimeter-wave radar object classification using knowledge-assisted neural network
por: Wang, Yanhua, et al.
Publicado: (2022) -
Deep Learning Derived Object Detection and Tracking Technology Based on Sensor Fusion of Millimeter-Wave Radar/Video and Its Application on Embedded Systems
por: Lin, Jia-Jheng, et al.
Publicado: (2023) -
Foreign Object Debris Automatic Target Detection for Millimeter-Wave Surveillance Radar
por: Qin, Fei, et al.
Publicado: (2021)