Cargando…
A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem †
In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of comput...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272184/ https://www.ncbi.nlm.nih.gov/pubmed/34283102 http://dx.doi.org/10.3390/s21134553 |
_version_ | 1783721165708066816 |
---|---|
author | Moon, Junhyung Yang, Minyeol Jeong, Jongpil |
author_facet | Moon, Junhyung Yang, Minyeol Jeong, Jongpil |
author_sort | Moon, Junhyung |
collection | PubMed |
description | In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of computing resources, an efficient DQN was used for the experiments using transfer learning data. Additionally, we conducted scheduling studies in the edge computing ecosystem of our manufacturing processes without the help of cloud centers. Cloud computing, an environment in which scheduling processing is performed, has issues sensitive to the manufacturing process in general, such as security issues and communication delay time, and research is being conducted in various fields, such as the introduction of an edge computing system that can replace them. We proposed a method of independently performing scheduling at the edge of the network through cooperative scheduling between edge devices within a multi-access edge computing structure. The proposed framework was evaluated, analyzed, and compared with existing frameworks in terms of providing solutions and services. |
format | Online Article Text |
id | pubmed-8272184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82721842021-07-11 A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † Moon, Junhyung Yang, Minyeol Jeong, Jongpil Sensors (Basel) Article In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of computing resources, an efficient DQN was used for the experiments using transfer learning data. Additionally, we conducted scheduling studies in the edge computing ecosystem of our manufacturing processes without the help of cloud centers. Cloud computing, an environment in which scheduling processing is performed, has issues sensitive to the manufacturing process in general, such as security issues and communication delay time, and research is being conducted in various fields, such as the introduction of an edge computing system that can replace them. We proposed a method of independently performing scheduling at the edge of the network through cooperative scheduling between edge devices within a multi-access edge computing structure. The proposed framework was evaluated, analyzed, and compared with existing frameworks in terms of providing solutions and services. MDPI 2021-07-02 /pmc/articles/PMC8272184/ /pubmed/34283102 http://dx.doi.org/10.3390/s21134553 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Moon, Junhyung Yang, Minyeol Jeong, Jongpil A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title | A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title_full | A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title_fullStr | A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title_full_unstemmed | A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title_short | A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem † |
title_sort | novel approach to the job shop scheduling problem based on the deep q-network in a cooperative multi-access edge computing ecosystem † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272184/ https://www.ncbi.nlm.nih.gov/pubmed/34283102 http://dx.doi.org/10.3390/s21134553 |
work_keys_str_mv | AT moonjunhyung anovelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem AT yangminyeol anovelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem AT jeongjongpil anovelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem AT moonjunhyung novelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem AT yangminyeol novelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem AT jeongjongpil novelapproachtothejobshopschedulingproblembasedonthedeepqnetworkinacooperativemultiaccessedgecomputingecosystem |