Cargando…
A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem †
In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of comput...
Autores principales: | Moon, Junhyung, Yang, Minyeol, Jeong, Jongpil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272184/ https://www.ncbi.nlm.nih.gov/pubmed/34283102 http://dx.doi.org/10.3390/s21134553 |
Ejemplares similares
-
A Genetic Approach to the Job Shop Scheduling Problem with Interval Uncertainty
por: Díaz, Hernán, et al.
Publicado: (2020) -
An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem
por: Meng, Leilei, et al.
Publicado: (2023) -
Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-Dimensional Transformation
por: Zang, Zelin, et al.
Publicado: (2019) -
Hybrid Quantum Annealing Heuristic Method for Solving Job Shop Scheduling Problem
por: Kurowski, Krzysztof, et al.
Publicado: (2020) -
Evaluating the job shop scheduling problem on a D-wave quantum annealer
por: Carugno, Costantino, et al.
Publicado: (2022)