Cargando…
Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging
Infrared thermal imaging has been widely used to show the correlation between thermal characteristics of the body and muscle activation. This study aims to investigate a method using thermal imaging to visualize and differentiate target muscles during resistance training. Thermal images were acquire...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272228/ https://www.ncbi.nlm.nih.gov/pubmed/34209377 http://dx.doi.org/10.3390/s21134505 |
_version_ | 1783721176043880448 |
---|---|
author | Jung, Haemin Seo, Jeongwung Seo, Kangwon Kim, Dohwi Park, Suhyun |
author_facet | Jung, Haemin Seo, Jeongwung Seo, Kangwon Kim, Dohwi Park, Suhyun |
author_sort | Jung, Haemin |
collection | PubMed |
description | Infrared thermal imaging has been widely used to show the correlation between thermal characteristics of the body and muscle activation. This study aims to investigate a method using thermal imaging to visualize and differentiate target muscles during resistance training. Thermal images were acquired to monitor three target muscles (i.e., biceps brachii, triceps brachii, and deltoid muscle) in the brachium while varying the training weight, duration, and order of training. The acquired thermal images were segmented and converted to heat maps. By generating difference heat maps from pairs of heat maps during training, the target muscles were clearly visualized, with an average temperature difference of 0.86 °C. It was observed that training order had no significant effect on skin surface temperature. The difference heat maps were also used to train a convolutional neural network (CNN) to show the feasibility of target muscle classification, with an accuracy of 92.3%. This study demonstrated that infrared thermal imaging could be effectively utilized to locate and differentiate target muscle activation during resistance training. |
format | Online Article Text |
id | pubmed-8272228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82722282021-07-11 Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging Jung, Haemin Seo, Jeongwung Seo, Kangwon Kim, Dohwi Park, Suhyun Sensors (Basel) Article Infrared thermal imaging has been widely used to show the correlation between thermal characteristics of the body and muscle activation. This study aims to investigate a method using thermal imaging to visualize and differentiate target muscles during resistance training. Thermal images were acquired to monitor three target muscles (i.e., biceps brachii, triceps brachii, and deltoid muscle) in the brachium while varying the training weight, duration, and order of training. The acquired thermal images were segmented and converted to heat maps. By generating difference heat maps from pairs of heat maps during training, the target muscles were clearly visualized, with an average temperature difference of 0.86 °C. It was observed that training order had no significant effect on skin surface temperature. The difference heat maps were also used to train a convolutional neural network (CNN) to show the feasibility of target muscle classification, with an accuracy of 92.3%. This study demonstrated that infrared thermal imaging could be effectively utilized to locate and differentiate target muscle activation during resistance training. MDPI 2021-06-30 /pmc/articles/PMC8272228/ /pubmed/34209377 http://dx.doi.org/10.3390/s21134505 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jung, Haemin Seo, Jeongwung Seo, Kangwon Kim, Dohwi Park, Suhyun Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title | Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title_full | Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title_fullStr | Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title_full_unstemmed | Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title_short | Detection of Muscle Activation during Resistance Training Using Infrared Thermal Imaging |
title_sort | detection of muscle activation during resistance training using infrared thermal imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272228/ https://www.ncbi.nlm.nih.gov/pubmed/34209377 http://dx.doi.org/10.3390/s21134505 |
work_keys_str_mv | AT junghaemin detectionofmuscleactivationduringresistancetrainingusinginfraredthermalimaging AT seojeongwung detectionofmuscleactivationduringresistancetrainingusinginfraredthermalimaging AT seokangwon detectionofmuscleactivationduringresistancetrainingusinginfraredthermalimaging AT kimdohwi detectionofmuscleactivationduringresistancetrainingusinginfraredthermalimaging AT parksuhyun detectionofmuscleactivationduringresistancetrainingusinginfraredthermalimaging |