Cargando…
Improved Fault Diagnosis in Hydraulic Systems with Gated Convolutional Autoencoder and Partially Simulated Data
This paper examines the effectiveness of neural network algorithms for hydraulic system fault detection and a novel neural network architecture is suggested. The proposed gated convolutional autoencoder was trained on a simulated training set augmented with just 0.2% data from the real test bench, d...
Autores principales: | Gareev, Albert, Protsenko, Vladimir, Stadnik, Dmitriy, Greshniakov, Pavel, Yuzifovich, Yuriy, Minaev, Evgeniy, Gimadiev, Asgat, Nikonorov, Artem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272240/ https://www.ncbi.nlm.nih.gov/pubmed/34199115 http://dx.doi.org/10.3390/s21134410 |
Ejemplares similares
-
A Convolutional Autoencoder Based Fault Diagnosis Method for a Hydraulic Solenoid Valve Considering Unknown Faults
por: Yoo, Seungjin, et al.
Publicado: (2023) -
Generative model based on junction tree variational autoencoder for HOMO value prediction and molecular optimization
por: Kondratyev, Vladimir, et al.
Publicado: (2023) -
Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers
por: Mallak, Ahlam, et al.
Publicado: (2021) -
On Combining Convolutional Autoencoders and Support Vector Machines for Fault Detection in Industrial Textures
por: Tellaeche Iglesias, Alberto, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022)