Cargando…
On the Improvement of Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions
Cognitive workload, being a quantitative measure of mental effort, draws significant interest of researchers, as it allows to monitor the state of mental fatigue. Estimation of cognitive workload becomes especially important for job positions requiring outstanding engagement and responsibility, e.g....
Autores principales: | Kaczorowska, Monika, Karczmarek, Paweł, Plechawska-Wójcik, Małgorzata, Tokovarov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272248/ https://www.ncbi.nlm.nih.gov/pubmed/34283098 http://dx.doi.org/10.3390/s21134542 |
Ejemplares similares
-
Interpretable Machine Learning Models for Three-Way Classification of Cognitive Workload Levels for Eye-Tracking Features
por: Kaczorowska, Monika, et al.
Publicado: (2021) -
Automated Classification of Cognitive Workload Levels Based on Psychophysiological and Behavioural Variables of Ex-Gaussian Distributional Features
por: Kaczorowska, Monika, et al.
Publicado: (2022) -
Recognition of Electroencephalography-Related Features of Neuronal Network Organization in Patients With Schizophrenia Using the Generalized Choquet Integrals
por: Plechawska-Wójcik, Małgorzata, et al.
Publicado: (2021) -
Manipulations of the Response-Stimulus Intervals as a Factor Inducing Controlled Amount of Reaction Time Intra-Individual Variability
por: Krukow, Paweł, et al.
Publicado: (2021) -
Eye-Tracking in Assessment of the Mental Workload of Harvester Operators
por: Naskrent, Bartłomiej, et al.
Publicado: (2022)