Cargando…
Circulating microRNA alternations in primary hyperuricemia and gout
OBJECTIVES: MicroRNAs (miRNAs) are short single-stranded RNAs that play a role in the post-transcriptional regulation of gene expression. Their deregulation can be associated with various diseases, such as cancer, neurodegenerative, and immune-related diseases. The aim of our study was to compare mi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272270/ https://www.ncbi.nlm.nih.gov/pubmed/34246297 http://dx.doi.org/10.1186/s13075-021-02569-w |
_version_ | 1783721185178025984 |
---|---|
author | Bohatá, Jana Horváthová, Veronika Pavlíková, Markéta Stibůrková, Blanka |
author_facet | Bohatá, Jana Horváthová, Veronika Pavlíková, Markéta Stibůrková, Blanka |
author_sort | Bohatá, Jana |
collection | PubMed |
description | OBJECTIVES: MicroRNAs (miRNAs) are short single-stranded RNAs that play a role in the post-transcriptional regulation of gene expression. Their deregulation can be associated with various diseases, such as cancer, neurodegenerative, and immune-related diseases. The aim of our study was to compare miRNA levels in plasma that could potentially influence the progression of hyperuricemia to gout, since the mechanism of progression is still unclear. METHODS: Total RNA, including miRNA, was isolated from the plasma of 45 patients with asymptomatic hyperuricemia, 131 patients with primary gout (including 16 patients having a gout attack), and 130 normouricemic controls. The expression of 18 selected miRNAs (cel-miR-39 and cel-miR-54 as spike-in controls, hsa-miR-16-5p and hsa-miR-25-3p as endogenous controls, hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30a-3p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-133a-3p, hsa-miR-142-3p, hsa-miR-143-3p, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-222-3p, hsa-miR-223-3p, hsa-miR-488-3p and hsa-miR-920) was measured using qPCR. RESULTS: We found that hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30c-5p, hsa-miR-142-3p, and hsa-miR-223-3p were significantly upregulated (p < 0.001) in the plasma of hyperuricemia and gout patients compared to normouricemic individuals. As part of the follow-up of our previous study, we found a negative correlation between hsa-miR-17-5p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-142-3p, and hsa-miR-223-3p with plasma levels of chemokine MCP-1. Additionally, we found a positive correlation between CRP and plasma levels of hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-142-3p, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-222-3p, and hsa-miR-223-3p. Five of those miRNAs (hsa-miR-126-3p, hsa-miR-142-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-222-3p) also had a positive correlation with serum creatinine and therefore a negative correlation with eGFR. CONCLUSION: Five miRNAs were significantly upregulated in the plasma of patients with hyperuricemia and gout (and those during a gout attack) compared to normouricemic controls. We also found a correlation between the plasma levels of several miRNA and plasma levels of MCP-1, CRP, serum creatinine, and eGFR. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02569-w. |
format | Online Article Text |
id | pubmed-8272270 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-82722702021-07-12 Circulating microRNA alternations in primary hyperuricemia and gout Bohatá, Jana Horváthová, Veronika Pavlíková, Markéta Stibůrková, Blanka Arthritis Res Ther Research Article OBJECTIVES: MicroRNAs (miRNAs) are short single-stranded RNAs that play a role in the post-transcriptional regulation of gene expression. Their deregulation can be associated with various diseases, such as cancer, neurodegenerative, and immune-related diseases. The aim of our study was to compare miRNA levels in plasma that could potentially influence the progression of hyperuricemia to gout, since the mechanism of progression is still unclear. METHODS: Total RNA, including miRNA, was isolated from the plasma of 45 patients with asymptomatic hyperuricemia, 131 patients with primary gout (including 16 patients having a gout attack), and 130 normouricemic controls. The expression of 18 selected miRNAs (cel-miR-39 and cel-miR-54 as spike-in controls, hsa-miR-16-5p and hsa-miR-25-3p as endogenous controls, hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30a-3p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-133a-3p, hsa-miR-142-3p, hsa-miR-143-3p, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-222-3p, hsa-miR-223-3p, hsa-miR-488-3p and hsa-miR-920) was measured using qPCR. RESULTS: We found that hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30c-5p, hsa-miR-142-3p, and hsa-miR-223-3p were significantly upregulated (p < 0.001) in the plasma of hyperuricemia and gout patients compared to normouricemic individuals. As part of the follow-up of our previous study, we found a negative correlation between hsa-miR-17-5p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-142-3p, and hsa-miR-223-3p with plasma levels of chemokine MCP-1. Additionally, we found a positive correlation between CRP and plasma levels of hsa-miR-17-5p, hsa-miR-18a-5p, hsa-miR-30c-5p, hsa-miR-126-3p, hsa-miR-142-3p, hsa-miR-146a-5p, hsa-miR-155-5p, hsa-miR-222-3p, and hsa-miR-223-3p. Five of those miRNAs (hsa-miR-126-3p, hsa-miR-142-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-222-3p) also had a positive correlation with serum creatinine and therefore a negative correlation with eGFR. CONCLUSION: Five miRNAs were significantly upregulated in the plasma of patients with hyperuricemia and gout (and those during a gout attack) compared to normouricemic controls. We also found a correlation between the plasma levels of several miRNA and plasma levels of MCP-1, CRP, serum creatinine, and eGFR. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-021-02569-w. BioMed Central 2021-07-10 2021 /pmc/articles/PMC8272270/ /pubmed/34246297 http://dx.doi.org/10.1186/s13075-021-02569-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Bohatá, Jana Horváthová, Veronika Pavlíková, Markéta Stibůrková, Blanka Circulating microRNA alternations in primary hyperuricemia and gout |
title | Circulating microRNA alternations in primary hyperuricemia and gout |
title_full | Circulating microRNA alternations in primary hyperuricemia and gout |
title_fullStr | Circulating microRNA alternations in primary hyperuricemia and gout |
title_full_unstemmed | Circulating microRNA alternations in primary hyperuricemia and gout |
title_short | Circulating microRNA alternations in primary hyperuricemia and gout |
title_sort | circulating microrna alternations in primary hyperuricemia and gout |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272270/ https://www.ncbi.nlm.nih.gov/pubmed/34246297 http://dx.doi.org/10.1186/s13075-021-02569-w |
work_keys_str_mv | AT bohatajana circulatingmicrornaalternationsinprimaryhyperuricemiaandgout AT horvathovaveronika circulatingmicrornaalternationsinprimaryhyperuricemiaandgout AT pavlikovamarketa circulatingmicrornaalternationsinprimaryhyperuricemiaandgout AT stiburkovablanka circulatingmicrornaalternationsinprimaryhyperuricemiaandgout |