Cargando…

Comparison of accuracy of two uncalibrated pulse contour cardiac output monitors in off-pump coronary artery bypass surgery patients using pulmonary artery catheter-thermodilution as a reference

BACKGROUND: Cardiac output (CO) is a key measure of adequacy of organ and tissue perfusion, especially in critically ill or complex surgical patients. CO monitoring technology continues to evolve. Recently developed CO monitors rely on unique algorithms based on pulse contour analysis of an arterial...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukkamala, Ramakrishna, Kohl, Benjamin A., Mahajan, Aman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272317/
https://www.ncbi.nlm.nih.gov/pubmed/34246222
http://dx.doi.org/10.1186/s12871-021-01415-5
Descripción
Sumario:BACKGROUND: Cardiac output (CO) is a key measure of adequacy of organ and tissue perfusion, especially in critically ill or complex surgical patients. CO monitoring technology continues to evolve. Recently developed CO monitors rely on unique algorithms based on pulse contour analysis of an arterial blood pressure (ABP) waveform. The objective of this investigation was to compare the accuracy of two monitors using different methods of pulse contour analysis – the Retia Argos device and the Edwards Vigileo-FloTrac device – with pulmonary artery catheter (PAC)-thermodilution as a reference. METHODS: Fifty-eight patients undergoing off-pump coronary artery bypass surgery formed the study cohort. A total of 572 triplets of CO measurements from each device – Argos, Vigileo-FloTrac (third generation), and thermodilution – were available before and after interventions (e.g., vasopressors, fluids, and inotropes). Bland–Altman analysis accounting for repeated measurements per subject and concordance analysis were applied to assess the accuracy of the CO values and intervention-induced CO changes of each pulse contour device against thermodilution. Cluster bootstrapping was employed to statistically compare the root-mean-squared-errors (RMSE = √(μ(2) + σ(2)), where μ and σ are the Bland–Altman bias and precision errors) and concordance rates of the two devices. RESULTS: The RMSE (mean (95% confidence intervals)) for CO values was 1.16 (1.00–1.32) L/min for the Argos device and 1.54 (1.33–1.77) L/min for the Vigileo-FloTrac device; the concordance rate for intervention-induced CO changes was 87 (82–92)% for the Argos device and 72 (65–78)% for the Vigileo-FloTrac device; and the RMSE for the CO changes was 17 (15–19)% for the Argos device and 21 (19–23)% for the Vigileo-FloTrac device (p < 0.0167 for all comparisons). CONCLUSIONS: In comparison with CO measured by the PAC, the Argos device proved to be more accurate than the Vigileo-FloTrac device in CO trending and absolute CO measurement in patients undergoing off-pump coronary artery bypass surgery. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12871-021-01415-5.