Cargando…
Rev-erbα exacerbates hepatic steatosis in alcoholic liver diseases through regulating autophagy
BACKGROUND AND AIMS: Alcoholic fatty liver (AFL) is a liver disease caused by long-term excessive drinking and is characterized by hepatic steatosis. Understanding the regulatory mechanism of steatosis is essential for the treatment of AFL. Rev-erbα is a member of the Rev-erbs family of nuclear rece...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272374/ https://www.ncbi.nlm.nih.gov/pubmed/34246287 http://dx.doi.org/10.1186/s13578-021-00622-4 |
Sumario: | BACKGROUND AND AIMS: Alcoholic fatty liver (AFL) is a liver disease caused by long-term excessive drinking and is characterized by hepatic steatosis. Understanding the regulatory mechanism of steatosis is essential for the treatment of AFL. Rev-erbα is a member of the Rev-erbs family of nuclear receptors, playing an important role in regulating lipid metabolism. However, its functional role in AFL and its underlying mechanism remains unclear. RESULTS: Rev-erbα was upregulated in the liver of EtOH-fed mice and EtOH-treated L-02 cells. Further, Rev-erbα activation exacerbates steatosis in L-02 cells. Inhibition/downexpression of Rev-erbα improved steatosis. Mechanistically, autophagy activity was inhibited in vivo and vitro. Interestingly, inhibition/downexpression of Rev-erbα enhanced autophagy. Furthermore, silencing of Rev-erbα up-regulated the nuclear expression of Bmal1. Autophagy activity was inhibited and steatosis was deteriorated after EtOH-treated L-02 cells were cotransfected with Rev-erbα shRNA and Bmal1 siRNA. CONCLUSIONS: Rev-erbα induces liver steatosis, which promotes the progression of AFL. Our study reveals a novel steatosis regulatory mechanism in AFL and suggest that Rev-erbα might be a potential therapeutic target for AFL. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13578-021-00622-4. |
---|